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Abstract
Estimating dynamic terrestrial ecosystem carbon (C) sources and sinks over large areas is difficult. The scaling of C sources and sinks from the

field level to the regional level has been challenging due to the variations of climate, soil, vegetation, and disturbances. As part of an effort to

estimate the spatial, temporal, and sectional dimensions of the United States C sources and sinks (the U.S. Carbon Trends Project), this study

estimated the forest ecosystem C sequestration of the Appalachian region (186,000 km2) for the period of 1972–2000 using the General Ensemble

Biogeochemical Modeling System (GEMS) that has a strong capability of assimilating land use and land cover change (LUCC) data. On 82

sampling blocks in the Appalachian region, GEMS used sequential 60 m resolution land cover change maps to capture forest stand-replacing

events and used forest inventory data to estimate non-stand-replacing changes. GEMS also used Monte Carlo approaches to deal with spatial

scaling issues such as initialization of forest age and soil properties. Ensemble simulations were performed to incorporate the uncertainties of input

data. Simulated results show that from 1972 to 2000 the net primary productivity (NPP), net ecosystem productivity (NEP), and net biome

productivity (NBP) averaged 6.2 Mg C ha�1 y�1 (�1.1), 2.2 Mg C ha�1 y�1 (�0.6), and 1.8 Mg C ha�1 y�1 (�0.6), respectively. The inter-annual

variability was driven mostly by climate. Detailed C budgets for the year 2000 were also calculated. Within a total 148,000 km2 forested area,

average forest ecosystem C density was estimated to be 186 Mg C ha�1 (�20), of which 98 Mg C ha�1 (�12) was in biomass and 88 Mg C ha�1

(�13) was in litter and soil. The total simulated C stock of the Appalachian forests was estimated to be 2751 Tg C (�296), including 1454 Tg C

(�178) in living biomass and 1297 Tg C (�192) in litter and soil. The total net C sequestration (i.e. NBP) of the forest ecosystem in 2000 was

estimated to be 19.5 Tg C y�1 (�6.8).

# 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Terrestrial ecosystem carbon (C) sequestration can reduce

the rate of build up of greenhouse gases in the atmosphere and

therefore can contribute to a better human adaptation to current

and future environmental changes. Forest ecosystem C

sequestration is of particular interest to researchers and policy

makers because, at global scales, forests account for 80–90% of

terrestrial plant C and 30–40% of soil C (Landsberg and Gower,

1997; Harvey, 2000). Forests and forest soils have large
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capacities to both store and release C (Cannell et al., 1992;

Dixon et al., 1994), and detailed forest ecosystem C budgets are

helpful for improving our understanding of the terrestrial C

cycle and for supporting the decision-making process in forest

management. However, estimating large-scale forest ecosystem

C budgets is complicated because of the difficulty of

quantifying the impacts of both natural environmental

variability and human disturbances. As a major indicator of

human disturbances, land use and land cover change (LUCC)

information, if available, needs to be incorporated into both

retrospective and predictive C budget calculations. Although

little has been done in temperate ecosystems, some research

work that mainly focused on tropical ecosystems estimated that

deforestation has been responsible for 87% of the estimated

emissions due to land-use change since 1850 (Houghton, 1999;

Houghton et al., 1999, 2000; IPCC, 2000). The global C
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emission due to human-induced LUCC was about

1.6 � 0.8 Pg C y�1 (1 Pg = 1015 g) in the 1990s, which was

more than two times the magnitude of the net global C

sequestration (0.7 � 1.0 Pg C y�1) during the same period

(IPCC, 2000). Nevertheless, it has been a major challenge to

detect and quantify the dynamic nature of LUCC over large

areas (Loveland et al., 2002; Liu et al., 2004a). Due to the

difficulties in mapping LUCC dynamics over large areas,

consistent high-resolution spatial LUCC data are rarely

available at the regional scale.

There exist generally three types of large-scale C estimation

methods to incorporate historic LUCC information: (1)

inventory-based methods with low spatial resolution LUCC

data, (2) biogeochemical process-based methods with static or

assumed LUCC history, and (3) biogeochemical process-based

methods with high-resolution LUCC data. Inventory-based

methods mainly use growth and yield data to estimate historic C

stocks and C budgets, such as the United States C accounting by

Turner et al. (1995) and the Canadian C accounting (CBM-

CFS) by Kurz and Apps (1995, 1999). The direct tree

measurements and the derived forest growth curves from

inventory have laid a solid basis for this type of method and

would enhance other methods. Land cover change histories

(forest harvests and fire disturbances) were incorporated into

the C accounting method, but usually were averaged to larger

scale due to constraints of data and resources. Some concerns

about this method include the transferability of forest growth

curves across regions and the lack of data on belowground C

components. High-resolution spatially explicit process-based

methods mainly use physiological tree growth models and

Geographic Information System (GIS) data. Examples include

3PG-SPATIAL (Landsberg and Waring, 1997), InTEC (Chen

et al., 2000), Liu et al. (2005), and BGC-MODIS (Heinsch

et al., 2003). These approaches try to incorporate more details

of the varying environmental factors and provide more details

of temporal trends and spatial distribution of C sequestration.

Impacts of inter-annual climate variations and spatial soil

property variances are commonly considered. These

approaches are usually limited by the lack of a dynamic

high-resolution LUCC datasets. They may use static land cover

(vegetation cover) types or assume potential dynamic vegeta-

tion cover types that are driven by some natural forces such as

climate change. Real land cover change history was

incorporated into some of these models but was usually

simplified. The LUCC-dependent C estimation methods often

use reconstructed LUCC history data (Carter et al., 1993;

Howard et al., 1995; Kelly et al., 1997; Parton and Rasmussen,

1994; Hurtt et al., 2002; Parton et al., 2004). These methods

focus on dynamic LUCC impacts, and the LUCC data may

come from various sources. This method has recently been

extended to drive process-based ecosystem models over large

areas, performing Monte Carlo initializations and ensemble

model simulations by assimilating various observed or

reconstructed high-resolution LUCC-related data, including

sequential remote sensing-based land cover change maps, soil

data, agricultural census data, and forest inventory data

(Moorcroft et al., 2001; Liu et al., 2004a, 2004b).
Forest ecosystems in the United States might significantly

contribute to the global C sink (Turner et al., 1995; Birdsey and

Heath, 1995; Heath and Birdsey, 1993; Heath and Smith, 2000;

Heath et al., 2002; Goodale et al., 2002). Nevertheless, large

uncertainties remain regarding the spatial and temporal patterns

and driving forces of the terrestrial C sink (Houghton et al.,

1999; Ciais et al., 2000; Pacala et al., 2001; Hurtt et al., 2004;

Liu et al., 2004a). The overarching goal of the U.S. Carbon

Trends Project is to estimate the spatial and temporal change of

C sequestration in the conterminous United States. This paper

focuses on the magnitude and temporal C trends of the

Appalachian forest ecosystems using the dynamic LUCC

history. The LUCC in this study includes both permanent land

cover type conversions (e.g. forest to urban) and temporary

disturbances (e.g. forest cuttings and regenerations).

2. Sites and methods

2.1. The Appalachian region and LUCC sampling blocks

The Appalachian region is located in the eastern part of the

United States covering parts of Pennsylvania, West Virginia,

Virginia, Kentucky, North Carolina, Tennessee, Alabama, and

Georgia. Our study area includes three of six Omernik level III

ecoregions (Fig. 1): the Blue Ridge (BR), the Ridge and Valley

(RV), and the Central Appalachians (CA). The North Central

Appalachians, Southwest Appalachians, and Northern Appa-

lachian Plateau and Upland ecoregions are not included at this

time. The Appalachian forest, with an area of 186,000 km2, is

one of the most diverse assemblages of plants and animals

found in the world’s temperate zone. The BR and the CA

ecoregions are about 80% forested. The RV ecoregion, an

important crop production region, has about 56% forest cover.

Almost all of the forest in these ecoregions is re-growth

following cutting (Stephenson et al., 1993) or following

agricultural abandonment.

For this study, ten 20 km � 20 km sampling blocks in the

BR region and seventy-two 10 km � 10 km sampling blocks in

the CA and RV regions were used for land cover change

detection under the U.S. Land Cover Trends Project (Loveland

et al., 2002). The original sampling design used 20 km � 20 km

sampling blocks, and a revised design used 10 km � 10 km

sampling blocks to better capture the spatial variability of

LUCC. The land cover types within each sampling block were

derived from five dates of the Landsat MSS, TM, and ETM+

data (nominally 1973, 1980, 1986, 1992, and 2000), which

were analyzed at 60 m resolution. There are 10 land cover types

defined: water, developed (urban), human disturbed, mining,

natural barren, forest, grass and shrub, agricultural, wetland,

and natural disturbed area. For the ecoregions in this study, the

human disturbed land cover type represents forest clear cutting.

2.2. Overview of the General Ensemble Biogeochemical

Modeling System (GEMS)

GEMS is designed for regional scale C modeling. The

spatial simulation units of GEMS are the cases in a joint
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Fig. 1. Land cover change and GEMS carbon simulation sampling blocks in the Appalachian region. Sampling blocks in the Blue Ridge ecoregion are

20 km � 20 km. The rest are 10 km � 10 km.
frequency distribution (JFD) table (Liu et al., 2004a, 2004b). A

JFD case contains one or multiple, homogeneous, connected or

isolated land pixels, representing a unique combination of the

values from the environmental GIS layers used in an overlay

operation (i.e., land cover maps of five dates, soil polygons

from the U.S. State Soil Geographic (STATSGO) database,

atmospheric nitrogen (N) deposition, monthly precipitation,

monthly maximum and minimum temperature, and county

boundary). Each JFD case has a specific spatial location and

extent. The land cover type in a JFD case may change for

successive time periods. For instance, a forestland can change

to a cropland, or a cropland can change to an urban area. Each

forest JFD case was further sub-divided into expanded (or sub)

JFD cases to account for selective cutting and additional clear

cutting that were not captured in the land cover change maps.

Some details about the expansion are given in Section 2.3.

The underlying ecosystem biogeochemical model in GEMS

is the Erosion–Deposition-Carbon-Model (EDCM) of Liu et al.

(2003), which was modified from the CENTURY model

(Parton et al., 1987). For each JFD case, GEMS prepares a set of

temporary input data for each EDCM simulation. These input

data and parameters include land cover type, climate

conditions, soil properties, forest age, crop types, and some

land use specifications such as fertilization, crop rotation, crop

harvesting, forest selective cutting, and so forth. Some of these

input data are generated by Monte Carlo randomization. For

example, initial forest age is based on the state level forest age
class structure derived from the Forest Inventory and Analysis

(FIA) database. Multiple EDCM model runs are performed for

each JFD case to incorporate the uncertainty of input data.

Model simulated results for the JFD cases are then aggregated

to sampling block and ecoregion levels. The GEMS conceptual

framework is shown in Fig. 2.

2.3. Forest clear cutting and selective cutting

We do not have continuous FIA related historical forest clear

cutting and other stand-replacing disturbances data in GIS

format for the study region and for the time period of the study.

We obtained the stand-replacing information from the U.S.

Land Cover Change Project, in which forest clear cutting and

other stand-replacing disturbances can be captured with two

consecutive land cover maps derived from remote sensing

observations. Because of the fast recovery of spectral

reflectance after reforestation, a clear-cutting site, immediately

followed by reforestation, might still be classified as a (young)

forest land after several years of plant growth. In this situation

some clear cuttings might not be recorded in the land cover

change maps. An effective time frame of 5 years was defined as

the time length that the land cover change maps can trace back

the clear cutting events. (Five year is based on the classification

method of the land cover change project, where the

classification is focused on national level and conservative.)

If a site is identified as a forest cutting site on the land cover
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Fig. 2. GEMS flowchart. The process includes Monte Carlo data initializations and ensemble simulations that assimilate the land cover change and other

environmental factors into the biogeochemical modeling system.
map, then we set the clear cutting event randomly between the

remote sensing date and 5 years prior to that date. If the time

period between two consecutive remote sensing observations is

longer than the 5-year effective time frame, additional clear

cutting events were scheduled following Liu et al. (2004a) by

assuming that the annual clear cutting rate detected by remote

sensing (i.e. all clear cutting recorded divided by 5) can be

applied to the time period outside of the effective time frame.

Forest selective cutting is usually not detectable by remote

sensing. GEMS prescribed the selective cutting by using the

state level FIA data. A forest JFD case was expanded to several

smaller cases according to FIA selective cutting information

and an expanded JFD case (area equal to the selective cutting

portion) was clear-cut.

2.4. The Monte Carlo initialization and outputs from

ensemble simulation

Downscaling some information (forest age, soil property) to

a detailed level is needed for biogeochemical model

parameterization. This was accomplished with a Monte Carlo

technique. For example, we need forest age for determining

initial forest biomass. The downscaling is to assign a forest age

to an individual JFD case based on statewide forest age

distribution derived from FIA data, which means a specific

forest age class is more likely to be selected if the age class

occupies a bigger area.

However, because the current FIA forest age distribution

data represents a specific period of time (e.g., North Carolina,

1984), which usually does not coincide with the start year of

model simulation (i.e., 1972), we needed to reconstruct the

initial age distribution in the start year. Several retrospective

rules were applied here:
1. F
or a given JFD case, if the initial land cover was not forest,

then there is no need to assign a forest age. If it becomes a

forest later, GEMS assigns an initial age of 1 year when the

conversion occurs.
2. I
f the initial land cover observation was forest, an initial

forest age is given. Suppose the FIA observation time is Tfia,

the simulation start time is Tstart, and suppose the Monte

Carlo generated forest age at Tfia is Afia, then the initial forest

age, Astart, is calculated using Eq. (1). If Astart is negative, the

Monte Carlo process is repeated until it becomes positive

Astart ¼ Afia � ðTfia � TstartÞ; Astart > 0 (1)
3. I
f a stand-replacing disturbance happened before FIA

observation, we assume it was a harvesting and we know

that usually the forest was at least 20 years of age at the time

of cutting. Suppose the cutting time is Tcut, and the random

age at the cutting time is Acut, then Astart is calculated using

Eq. (2). If Astart is negative, repeat the random process until it

becomes positive

Astart ¼ maxð20;AcutÞ � ðTcut � TstartÞ; Astart > 0 (2)

Because of the Monte Carlo process, it is necessary to do

ensemble simulations of each expanded JFD case to incorporate

the variability and uncertainty of input data and to get unbiased

C estimates and the associated variation (Reiners et al., 2002;

Liu et al., 2004a, 2004b). Our modeling experiment indicates

that for each JFD case the means and standard deviations of

output variables can be stabilized with 20 ensemble simula-

tions. Twenty ensemble simulations also produce stable outputs

for each sampling block and the whole ecoregion.

2.5. Estimation of C sources and sinks

In this study, the simulations of C stocks and C fluxes in

forest ecosystems used the EDCM (Liu et al., 2003). The

estimation of forest net primary productivity (NPP) required

setting up a maximum potential NPP parameter. This parameter

was automated using the Moderate Resolution Imaging

Spectro-radiometer (MODIS) product (Heinsch et al., 2003;

see http://www.ntsg.umt.edu/modis/MOD17UsersGuide.pdf).

The MODIS NPP product provided a good reference for

http://www.ntsg.umt.edu/modis/MOD17UsersGuide.pdf
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controlling the spatial variation of GEMS NPP output. Each

land pixel on the MODIS NPP map had a NPP value. Within

each sampling block, we calculated the average of the MODIS

top 10% NPP values and used it to derive the potential

(maximum) forest NPP parameter for the block. The calculated

GEMS average NPP was not the MODIS average NPP, but they

were similar in spatial pattern because the GEMS NPP was

partly controlled by the MODIS top 10% NPP values. The net

ecosystem productivity (NEP) was calculated as the NPPminus

CO2 emissions from litter and soil. NEP accounts for the net C

change of an ecosystem before disturbances, which is the same

as the net ecosystem exchange (NEE). Because no data were

collected for fire and other disturbances in this study, we only

specify forest harvested wood C (HWC) removal (representing

all stand-replacing disturbances) for the C budget calculation.

The net biome productivity (NBP) was calculated as NEP

minus annual HWC removal. CO2 emission from the HWC

pool was also calculated. The starting HWC pool was

initialized using the assumption that the HWC pool size in

the 1970s was 80% of the pool size of HWC of 1990s,

according to the temporal change of HWC stocks at the national

scale (Skog and Nicholson, 1998). More information on the

treatment of HWCwas given in Liu et al. (2004a). Different soil

C pools have different decomposition rates and influence the C

source and sink. Since less information about the fractions of

soil slow C and passive C was available, we initialized slow and

passive C pool at a proportion of 1:1 after model test for the

study region. Fast soil C pool was initialized at 5% of total soil

C pool. For each sampling block, NBP was aggregated from the

JFD cases. For the whole study region, NBP and its standard

variation range were calculated based on the 82 sample blocks.

The LUCC impact on forest C flux estimates was related to

forest harvesting activities, the changes of forest area, and

forest age distributions. In this study, carbon dynamics in the

region were simulated separately using the 1972 land cover

alone, representing the static land cover scenario, and the 1972–

2000 dynamic land cover scenario. The differences of these two

simulations were used to assess and quantify the LUCC impacts

on carbon stocks and fluxes.

2.6. Data sources

The high-resolution LUCC information was developed

using Landsat MSS and TM data (Loveland et al., 2002). Soil

coverage data were obtained from the STATSGO database

(USDA, 1994) and its initialization approach was outlined in
Table 1

Major land cover changes (percentage) in the Appalachians from 1972 to 2000

Ecoregion Year Urban (%) Mining (%) F

Blue Ridge (BR) 1972 6.0 0.0 8

2000 7.2 0.0 8

Ridge and Valley (RV) 1972 7.9 0.2 5

2000 9.3 0.3 5

Central Appalachians (CA) 1972 3.3 1.9 8

2000 3.6 3.2 8
Liu et al. (2004a). Climatic coverages were derived from the

United Kingdom’s Climatic Research Unit 0.58 data set

(CRUTS version 2.0) (Mitchell et al., 2004; Mitchell and Jones,

2005). The total atmospheric nitrogen deposition from wet and

dry sources was gathered from the National Atmospheric

Deposition Program (http://nadp.sws.uiuc.edu/). Other land use

data were collected from sources that included the FIA database

and the National Resources Inventory (NRI) database devel-

oped by the Natural Resources Conservation Service, U.S.

Department of Agriculture. (http://www.nrcs.usda.gov/techni-

cal/NRI). MODIS NPP data were downloaded from the

University of Montana (ftp://ftp.ntsg.umt.edu/pub/MOD17).

3. Results

3.1. Major land cover changes of the Appalachians from

1972 to 2000

The landscape of the Appalachian region has been altered by

logging, urban development, agriculture, and mining. In

general, based on the 82 sampling blocks, the Appalachian

forestlands (including disturbed land that had been deforested

and then reforested) had a net decrease of only about 1% from

1972 to 2000. The major characteristics of LUCC are the

urbanization in the BR and RV regions and the conversion of

forestland into mining and grassland (reclaimed mine land) in

the CA region. Table 1 shows that forest and transitional area in

the BR region decreased 0.6% with a 1.2% urban area increase;

the RV forest and transitional area decreased 1.4% and

agricultural land decreased 0.7% with a 1.4% urban area

increase; and the CA forest and transitional area decreased

2.5% with a 1.1% grassland increase and 1.3% mining area

increase. These land cover changes were assimilated into

GEMS for C simulation. It should be mentioned that only some

of the earliest land cover change observations were in the

nominal year 1972. In fact, most observations used imagery for

1973, 1974, and even 1975. We assumed static land cover (no

clear cuttings) on each sample block before their first land cover

observation time.

3.2. Simulated forest ages, C stocks, and C sinks

During the 29 years of the simulation period, average forest

age increased 16.1, 20.4, and 19.3 years in the BR, RV, and CA

regions, respectively (Fig. 3A). Because of forest removal

(mature trees removed and young trees planted), the average
orest (%) Transitional (%) Grass/shrub (%) Agriculture (%)

3.1 0.0 0.1 10.3

1.8 0.7 0.1 10.3

7.3 0.0 0.1 31.2

5.8 0.1 0.1 30.5

6.3 0.0 0.7 6.4

3.4 0.4 1.8 6.8

http://nadp.sws.uiuc.edu/
http://www.nrcs.usda.gov/technical/NRI
http://www.nrcs.usda.gov/technical/NRI
ftp://ftp.ntsg.umt.edu/pub/MOD17
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Fig. 3. Estimated average forest age of the Appalachian forests. (A) Forest age

increase trends through 1972–2000; (B) forest age class structure in 1972 and

2000 (age class interval = 10 years).

Fig. 4. Estimated historic biomass and soil carbon stocks of the Appalachian

forests.
forest age increase for the entire Appalachian was about 0.5–

0.7 years per annum. The BR region seemed to have

experienced heavier disturbances than the other two ecoregions

as shown by the lowest average forest age increase. But the

smallest forest area decrease was in the BR, indicating a more

active reforestation practice following cutting. If no forest

regeneration followed clear cutting, the land would be no

longer categorized as forest, so the average age of the remaining

forests cannot be deduced by the cutting. The CA region had a

greater rate of forest area decrease than the RV region, so it

would be reasonable to assume that forest age increase in CA is

lower than that in RV. However, the difference in age increment

is not big (RV, 20.4 and CA, 19.3). Some forestland may have

been converted to mining sites instead of proceeding to forest

regeneration, and these mining areas were excluded from the

forest age calculation. Normally, older forests would have

lower age increases than younger forests if they underwent the

same level of disturbance and regeneration. Since the average

forest age in CAwas higher than that of RVand they had similar

age increases, we speculate that RV had relatively heavier

disturbance than CA. Here the disturbance means clear cutting

followed by forest regeneration. However, the LUCC conver-

sion from forest to other uses (mining in this case) is higher in

CA than in RV, indicating fewer reforestations in CA. At the

end of the simulation, the GEMS estimates of average forest

age agreed with the recent U.S. forest facts that average forest

age in the east is about 40–50 years old (USDA Forest Service,

2000). This is because we initialized the forest age based on

FIA data and estimated clear cutting rates from remotely sensed

data. Fig. 3B shows a typical age class shift in the Appalachian

forests. The data is from a sample block in North Carolina. The

peak of age distribution fell between 30 and 40 years in 1972,

but it hit between 60 and 70 years in 2000. The percentage of

old trees (100+ years old) also increased. The age class change

was closely related to the woody encroachment discussed later.

The three ecoregions all showed increasing biomass and soil

C stocks for the period from 1972 to 2000 (Fig. 4). Biomass C

density in the BR, RV, and CA ecoregions increased from 64.3
to 98.1 Mg C ha�1 (net change 33.8), 63.4 to 95.3 Mg C ha�1

(net change 31.9), and 70.9 to 102.8 Mg C ha�1 (net change

31.9), respectively. This also generally corresponds with the

FIA data on growing stock volume per hectare in the eastern

United States indicating a biomass increase of about 35% from

1970 to 1997 (USDA Forest Service, 2000). None of the three

ecoregions showed trends toward biomass equilibrium. Incre-

ments of soil C density in those ecoregions were 78.0–

78.6 Mg C ha�1 (net change 0.6), 53.9–60.2 Mg C ha�1 (net

change 6.3), and 67.1–71.4 Mg C ha�1 (net change 4.3),

respectively. The regions with higher soil C stocks had less

soil C accumulation. Compared to the biomass C increase, soil

C accumulation was very slow. Soil C in both the BR and CA

regions decreased or remained stable in the first half of the

simulation period and started to accumulate in the later half of

the simulation period. This could be due to the younger forest at

the start time (indicating heavier disturbances in the previous

decade), so the forest produced less C input to soil than soil C

loss from respiration. Then the forest gradually became more

mature and produced more C input to soil, so that soil C was

recovering from previous depletion. The RV region has the

lowest forest biomass and soil C stock density. However, RV

soil C did not show any decrease in the beginning periods and

its net C increase was the highest. This seems partly related to

the initial soil C stock level.

NPP is a critical component for our C budget calculation.

Fig. 5 shows a comparison of GEMS average NPP and MODIS

average NPP (not the NPP of the top 10% high NPP pixels) in

the 82 sampling blocks. There is a general correspondence

between the two NPP estimates, which showed the effective-

ness of using the MODIS top 10% high NPP pixels to control

the spatial pattern of GEMS NPP. The scattered distribution of

comparison points in Fig. 5 (R2 = 0.63) is mostly due to

differences in land cover classification methods, map resolution

(GEMS 60 m, MODIS 1 km), and NPP algorithms. In sample

blocks where non-forest area was high, the NPP estimates from

GEMS were usually lower than the NPP estimates from

MODIS.

The historical trends of four major C fluxes (NPP, NEP, C

removal, and NBP) are shown in Fig. 6. NPP values in the BR,

RV, and CA regions were averaged 6.7, 5.8, and
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Fig. 5. NPP comparison between GEMS andMODIS at the sample block scale.

Each point represents a sample block.

Fig. 7. Selected ratios of NBP, NEP, and NPP in the Appalachian forest

ecosystem.
6.1 Mg C ha�1 y�1 through 1972–2000, respectively. The

observed relationship between simulated soil C stock and

NPP is consistent with our expectations that higher soil C stocks

are usually associated with higher decomposition and thus may

lead to higher soil fertility and higher NPP values. BR is the

most productive region in terms of NPP, whereas RV is the least

productive region. NEP values in those ecoregions were quite

similar, about 2.2 Mg C ha�1 y�1, and roughly 35% of NPP

values. In the BR, soil respiration was high partly due to its

higher soil C content and this offset more C from NPP. As for

forest C removal, BR had the highest C removal disturbance,
Fig. 6. Historic NPP, NEP, carbon removal, and NBP in the three Appalachian

ecoregions.
which averaged 0.4 Mg C ha�1 y�1, nearly 1.5 times the C

removal strength of the RVand CA. NBP (the net C sink) in the

three ecoregions averaged 1.7, 1.9, and 1.9 Mg C ha�1 y�1 for

BR, RV, and CA regions, respectively. This was mostly because

the BR region had higher soil respiration and C removal. The

three ecoregions showed similar NPP and NEP inter-annual

variations, which could be more than 1.0 Mg C ha�1 y�1

resulting from their similar climate histories. The C removal

inter-annual variations were usually under 0.2 Mg C ha�1 y�1.

This indicates that climate variation is the main driving force of

NPP and NEP temporal variation in the Appalachians for the

study periods.

Combining output data for the three ecoregions (forestland

only) in 2000, the averages of NPP, NEP and NBPwere 6.2, 2.2,

1.8 Mg C ha�1 y�1, respectively. The ratios of NPP:NEP:NBP

are indicators of ecosystem production efficiency. Fig. 7 shows

that the ratio of NEP:NPP is about 0.3–0.4, i.e. approximately

60–70% of the NPP product was respired from soil and litter as

CO2. The ratio of NBP:NEP is 0.8, which means only 20% of

the ecosystemC accumulation was removed from the system by

human disturbances.

Based on the 82 sampling blocks, the mean and variance of

NBP in the Appalachian forests were calculated. The simulated

NBP varied from 1.0 to 2.7 Mg C ha�1 y�1, with a mean of

1.8 Mg C ha�1 y�1. The standard deviation ranged from 0.7 to

1.2 Mg C ha�1 y�1, with a mean of 0.9 Mg C ha�1 y�1. NBP

estimation at the 95% confidence level is shown in Fig. 8.

Estimated NBP in 1972 and 1973 was high because our

baseline land cover change observations were mostly started in

1973 and 1974 (few were in 1972 and 1975). So, the majority of

forest removal (harvesting) happened after 1975 in the model.

The net C sequestration in the region can be attributed to

three pools: biomass, soil, and HWC. Fig. 9 shows the relative

C accumulation strength of three pools for three time periods.
Fig. 8. Simulated carbon sink dynamics (NBP) of the Appalachian forests with

standard errors calculated across blocks for each year based on the 82 sampling

blocks.
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Fig. 9. Relative allocation of net carbon gains to biomass, soil and harvested

carbon pools in the past decades.
In the early period of the simulation, about 80% of the

sequestered C accumulated in the biomass pool. However, as

the simulation continued the relative biomass C accumulation

decreased and the C accumulation in soil and harvested wood

pool increased. This may reflect the LUCC in the past few

decades (1972–2000) because higher biomass C accumulation

at the beginning of simulation years indicated younger forests

and disturbed soil, and less intensive harvesting at a later stage

made the forest grow mature, and more C went into soil C

pools.

3.3. C budget of 2000

Some major Appalachian forest C stocks and fluxes in 2000

are provided in Table 2. The ratio of biomass C to soil C is

estimated to be 1:1.1. The ratio of NPP:NEP:NBP is estimated

to be 100:29:23. The harvested C is only about 6% of NPP and

21% of NEP. It shows that the RV ecoregion had the least

biomass and soil C density and the lowest NPP and NEP

compared to the other two ecoregions in 2000. The BR

ecoregion had the highest NPP, and at the mean while, the

highest C removal. The CT ecoregion had the highest NEP and

NBP.

Fig. 10 shows detailed budgets of the simulated C pools and

fluxes of five biomass components, three litter components

(including standing dead wood, above-ground litter and below-

ground litter) and three soil components of the Appalachian

forests in 2000. The total NPP was estimated at 86.7 Tg C y�1,

of which 16.6 Tg C was stored in living plant biomass;

5.3 Tg C was removed to the harvested wood pool; and

64.8 Tg C went into litter pool. About 61.3 Tg C was released

into the atmosphere through soil and litter decomposition. Net

litter and soil C increments were �1.6 and 4.4 Tg C,
Table 2

Carbon stocks density and fluxes of Appalachian forests in 2000

Ecoregion C stocks

Total C Biomass Soil

Blue Ridge (BR) 196 (�18) 98 (�3) 98 (�15

Ridge and Valley (RV) 174 (�19) 95 (�12) 79 (�11

Central Appalachians (CA) 196 (�13) 103 (�13) 93 (�8)

Appalachian Average 186 (�20) 98 (� 2) 88 (�13

Data in the parenthesis are the standard deviations. Units: Mg C ha�1 for C stocks
respectively. The net litter loss was caused by the decomposi-

tion of the relatively high level of litter in the previous year.

(Some litter, such as leaf, decomposes fast. A high production

year will produce high level of litter stock, but if followed by a

low production year, the litter stock will be lowered.) The NEP

of the overall forest ecosystem was 24.8 Tg C y�1, and NBP

(i.e. NEP, removal) was 19.5 Tg C y�1, indicating the

Appalachian forest ecosystems were a net C sink in that year.

As for the harvested wood C pool, a wood product decay

amount of 7.1 Tg C was lost in 2000, but a new harvesting

wood C of 5.3 Tg was added to the pool. Therefore, the net

change of harvested wood C pool was �1.8 Tg.

3.4. Evaluation of land cover change impact on C

sequestration

We simulated the sample blocks of the BR region using a

single land cover map (1972–1975) and compared the results

with a simulation using five dates of land cover maps. Fig. 11

shows that without dynamic LUCC, the simulated NBP for the

BR region would be higher than the sum of the simulated NBP

plus the C removal under a dynamic LUCC scenario. The

difference was from the increment of forest growth that was

simulated in the static modeling scenario but did not occur in

the dynamic modeling scenario. The simulation with land cover

change was about 10–20% less than the simulated C

sequestration under static LUCC for this study.

4. Discussion

Parameterizing biogeochemical model using remote sensing

product is helpful. The spatial pattern of GEMS NPP generally

matched the MODIS estimates because GEMS initialization

used MODIS high NPP values. However, at sites with a high

proportion of non-forest land, GEMS forest NPP estimates

were usually lower than MODIS NPP estimates. This could be

due to the differences of land cover classification, map

resolution, mixed pixels, NPP algorithms, or other factors.

Using MODIS NPP to control the GEMS NPP calculation is

still empirical. There are other options for improving the GEMS

NPP sub-model in the future, such as importing NPPmaps from

other biogeochemical models and importing physiological NPP

algorithms.

The biomass estimation of GEMS is higher than the FIA

state level average. This may be caused by a number of things:

GEMS does not consider stem density, forest cover fractions,
C fluxes

NPP NEP NBP Harvest

) 6.8 (�0.7) 1.7 (�0.5) 1.2 (�0.5) 0.5 (�0.3)

) 5.3 (�1.3) 1.5 (�0.8) 1.2 (�0.8) 0.4 (�0.3)

6.0 (�0.7) 1.9 (�0.5) 1.6 (�0.5) 0.3 (�0.2)

) 5.9 (�1.1) 1.7 (�0.6) 1.3 (�0.6) 0.3 (�0.3)

, and Mg C ha�1 y�1 for C fluxes.
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Fig. 10. Detailed carbon budget of Appalachian forests in 2000 (unit: Tg C). Each ecosystem component is labeled with name, carbon pool size at the end of the year

and carbon change rate. SOC: soil organic carbon. D: net change rate. ‘‘Harvested Wood’’ is a virtual offsite carbon pool based on Liu et al. (2004a).
and tree species whereas the FIA data accounts for all types of

forests including sparse forests. In addition, we used only state

level averages of the FIA data. Since the Appalachian region is

more productive than the surrounding areas and the selected

ecoregions cover only part of each state, the higher biomass

estimation than FIA is not unreasonable, although the accuracy

still needs further evaluation.

Details of the C budget in 2000 provided further validation

of the GEMS outputs. The ratio of live belowground biomass C

to total live biomass C is 0.24, which matches the FIA analysis

(0.25) of Johnson and Sharpe (1983). This estimation is also

close to the estimation of Jenkins et al. (2001), according to
Fig. 11. Simulated impact of LUCC on C sinks in the Blue Ridge (BR)

ecoregion. Without dynamic LUCC introduced into GEMS, the C sink strength

for the BR region would be higher. This static LUCC based NBP value was

higher than the sum of the NBP under the dynamic LUCC scenario plus the

actual C removal. The estimated net C difference induced by LUCC was about

10–20% of the simulated C sink under dynamic LUCC.
which the coarse root (not including fine root) to total wood

ratio is about 0.2. The aboveground litter is 17.6% of the total

aboveground biomass, which is slightly higher than the

estimated range of 4–17% of Johnson and Sharpe (1983).

The higher litter output may be caused by the model

parameterization in which no litter is removed and no fire

disturbance event is simulated. This issue can be resolved when

proper fire regimes and litter removal are prescribed in GEMS.

Estimated NBP of Appalachian forests from 1972 to 2000 is

1.8 Mg C ha�1 y�1 (�0.6). This estimate is higher than the

results ofHurtt’s et al. (2002), where their estimated forest C sink

strength in the 1980s for all the United States was about

0.9 Mg C ha�1 y�1. The high C sink strength was partly because

of the forest woody encroachment during 1970–2000. This can

be verified by comparing the biomass C sink to soil C sink ratios

of GEMS result (80:20) andHurtt’s result (45:55). The estimated

NEP of Appalachian forests is 2.2 Mg C ha�1 y�1 (�0.6). This

value is close to Brown and Schroeder’s (1999) estimation of

2.1 Mg C ha�1 y�1 for the forest in the easternUnited States. It is

also close to the estimation of 1.4–2.8 Mg C ha�1 y�1 for the

mature forests in New England (Goulden et al., 1996).

For the Appalachian forests, the ratios of NPP:NEP:NBP in

2000 are estimated to be 100:29:23. High NEP may indicate

that the Appalachian forest ecosystem had high growth (NPP)

and low mortality due to the young forest age. High NBP

indicates that human disturbance (harvesting removal) was

reduced. In fact, forest harvesting in the Appalachian region in

2000 (5.3 Tg C) was only 21% of NEP (24.8 Tg). From the

simulation, most of the C sequestered (about 70–80%) was



J. Liu et al. / Forest Ecology and Management 222 (2006) 191–201200
stored in biomass. So the C sink was mainly a woody

encroachment phenomenon, which can also be verified by the

changes of forest age class structure.

The average soil C sink was estimated about

0.1 Mg C ha�1 y�1 during the 1980s, which was at the lower

limit of the estimates of Gaudinski et al. (2000) that temperate

forest soils sequestrated 0.1–0.3 Mg C ha�1 y�1 during the

same time period. This was probably due to the low litter input

and low mortality at stand level when the forest was young.

However, the BR region had the highest soil C stock but the

lowest soil C increment. The reason was most likely the heavier

disturbance and the related stand age dynamics at regional

level. BR region had about doubled harvesting intensity than

the other two regions. So more forest land had been disturbed

and the regional soil C increase was lower. It is likely that forest

(mainly biomass pool) in this region will be a net C sink for

several decades to come because of its current age and

harvesting intensity.

Some ecosystem features are scale-dependent. Net C change

in a small region could be positive or negative and more

dynamic than large regions. When C source and sink values

from sub-regions are averaged and smoothed for larger regions,

the regionally averaged C trend is more stable than at the stand

level. Regional level average forest age is another scale-

dependent feature. It is apparent that the regional average forest

age is an indicator of historical disturbance because the forest

age increment per annum is smaller than one. A smaller age

increment reflects heavier disturbance.

This study has been based on dynamic LUCC history. At

present, this type of LUCC history is available only for the

sampling blocks. We have calculated the carbon balance at high

resolution for the sample blocks, but at the ecoregion level it is

not yet spatially explicit. Various strategies can be exploited to

quantify the spatial distribution of this C sink, including GIS

interpolation, regression tree and neural networks.

The impact of land cover change on C sequestration includes

the adjustment of forest growth. When a forest is removed, the

potential growth is also removed. Comparison of the estimated

C sinks under static and dynamic land cover revealed that a

reduction in C accumulation could be caused by the removal of

‘‘growth’’. For the BR region, this reduction was about 10–20%

of NBP.
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